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Abstract

This paper presents a brief survey of the research on multicore computing that is performed at
three research centers: ParLab at Berkeley, UPCRC-Illinois and the Pervasive Parallel Laboratory at
Stanford. This research is focused on client computing and covers applications, programming
environments and architecture.

Introduction

For more than three decades, the microelectronics industry has followed the trajectory set by
Moore’s Law of exponentially decreasing feature size and increasing circuit density. The
microprocessor industry has leveraged this evolution to increase uniprocessor performance,
decreasing cycle time and increasing the average number of executed instructions per cycle (IPC).

This evolution stopped a few years ago. Power constraints are resulting in stagnant clock rates,
and new micro-architecture designs yield very limited improvements in IPC. Instead, the industry
uses continued increases in transistor counts to populate chips with an increasing number of cores
- multiple independent processors. This change has profound implications for the IT industry. In
the past, each generation of hardware brought increased performance on existing applications, with
no code rewrite, and enabled new, performance hungry applications. This is still true but only for
applications written to run in parallel, and written to scale to an increasing number of cores.

This is less of a problem for servers. Server applications are usually throughput oriented, and
can leverage more parallelism by serving a larger number of clients or by consolidating server
functions onto fewer systems. Many server applications spent most of their cycles on a small
number of services, such as databases or web servers; increased parallelism in these few services
boosts the performance of many server applications.

Parallelism for client and mobile applications is a harder problem. The applications are
turnaround oriented, and the use of parallelism to reduce response time requires more algorithmic
work. Client applications are more diverse - it is not sufficient to run in parallel a few services.



Furthermore, mobile systems are power constrained; and improved wireless connectivity enables
shifting computations to the server (or the cloud).

This suggests the following questions:

1. Will compelling new client applications emerge that require significant added client
performance?

2. Can such applications leverage parallelism?

3. Can we develop a programming environment that enables a large programmer
community to develop parallel codes?

4. Can multicore architectures and their software scale to the hundreds of cores that
hardware will be able to support in a decade?

A negative answer to any of these questions will imply significant upheavals in the business
model of many IT companies. We believe that the answer to all four questions is positive; however,
a timely solution to these problems requires a significant acceleration of the transfer of research
ideas into practice.

In the next three sections, we present the research done at Berkeley, Illinois, and Stanford to
address these problems. These centers share common themes. All three have specific applications
they are parallelizing, rather than developing technology for undefined future applications as is
traditional in research. All focus primarily on client computing, designing technology that can work
well up through hundreds of cores. All three reject a single solution approach, assuming instead
that software is developed by teams of programmers with different specialties, some with more
domain expertise, and some with deeper computer science knowledge; different specialists need
different sets of tools.

Although they share assumptions, the diversity of these three centers is seen in:
— The role of parallel programming patterns in shaping parallel software architecture

— A focus on different programming environments (Python+frameworks, safe parallel C++
or Scala+embedded domain specific languages);

— A focus on different approaches for the production of parallel code (static compilation
and optimization, run-time compilation and optimization, autotuning);

— Architecture support for parallelism (isolation and measurement vs. communication
and synchronization);

— And even how to evaluate parallel architectures (FPGAs and/or software simulation).

ParLab at Berkeley

Recognizing the difficulty of the multicore challenge, Intel and Microsoft invited 25 universities to
propose parallel computing centers. We were delighted they selected us in 2008 and that another
six companies (so far) joined Intel and Microsoft as affiliates: National Instruments, NEC, Nokia,
NVIDIA, Samsung, and Sun Microsystems. Embracing open-source software and welcoming all



collaborators, the Berkeley Parallel Computing Laboratory is a team of 50 PhD students and a
dozen faculty leaders from many fields who work closely together towards our ambitious goal of
making parallel computing productive, performant, energy-efficient, scalable, portable, and at least
as correct as sequential programs [1].

Patterns and Frameworks

Many presume the challenge is for today's programmers to become efficient parallel
programmers with only modest training. Our goal is quite different. It is to enable the productive
development of efficient parallel programs by tomorrow's programmers. As mentioned above, we
believe future programmers will be either domain experts or sophisticated computer scientists as
few domain experts have the time to develop performance programming skills and few computer
scientists have the time to develop domain expertise. The latter group will create frameworks and
software stacks that enable domain experts to develop applications without understanding details
of the underlying platforms.

We believe that the key to the design of parallel programs is software architecture, and the key
to their efficient implementation is frameworks. In our approach, the basis of both is design
patterns and a pattern language. Borrowed from civil architecture, the term design pattern means
solutions to recurring design problems that domain experts learn. A pattern language is simply an
organized way of navigating through a collection of design patterns to produce a design. Our
Pattern Language [2] consists of a series of computational patterns drawn largely from thirteen
motifs[1]. We see these as the fundamental software building blocks that are composed using a
series of structural patterns drawn from common software architectural styles, such as pipe-and-
filter.

A software architecture is then the hierarchical composition of computational and structural
patterns, which we refine using lower-level design patterns. This software architecture and its
refinement, although useful, are entirely conceptual. To implement the software, we rely on
frameworks. We define a pattern-oriented software framework as an environment built around a
software architecture in which customization is only allowed in harmony with the framework's
architecture. For example, if based on pipe-and-filter, then customization involves only modifying
pipes or filters.

We envision a two-layer software stack. In the productivity layer, domain experts principally
develop applications using application frameworks. In the efficiency layer, computer scientists
develop these high-level application frameworks as well as other supporting software frameworks
in the stack. Application frameworks have two advantages: First, the application programmer
works within a familiar environment using concepts drawn from the application domain. Second,
we prevent expression of many annoying problems of parallel programming: non-determinism,
races, deadlock, starvation, and so on. To reduce such problems inside these frameworks, we use
dynamic testing to execute problematic schedules [3].

SEJITS: Bridging the Productivity-Efficiency Gap

Framework writers are more productive when they write in high level "productivity layer"
languages (PLLs) like Python or Ruby whose abstractions match the application domain; studies



have reported factors of 3-10 fewer lines of code and 3-5 times faster development when using
PLLs rather than "efficiency level languages" (ELLs) like C++ or Java [4,5,6]. However, PLL
performance may be orders of magnitude worse than ELL code, in part due to interpreted
execution.

We are developing a new approach to bridge the gap between PLLs and ELLs. Modern scripting
languages like Python and Ruby include facilities to allow late binding of an ELL module to execute
a function of the PLL. In particular, introspection allows a function to inspect its own abstract syntax
tree (AST) when first called, to determine whether the AST can be transformed into one that
matches a computation performed by some ELL module. If it can, PLL metaprogramming support
then specializes the function at runtime by generating, compiling, and linking the ELL code to the
running PLL interpreter. Indeed, the ELL code generation may include syntax-directed translation
of the AST into the ELL. If the AST cannot be matched to an existing ELL module or the module
targets the wrong hardware, the PLL interpreter just continues executing as usual. Note that this
approach preserves portability since it does not modify the source PLL program.

While just-in-time (JIT) code generation and specialization is well established with Java and
Microsoft .NET, our approach selectively specializes only those functions that have a matching ELL
code generator, rather than having to JIT the entire PLL. Also, the introspection and
metaprogramming facilities allow the specialization machinery to be embedded in the PLL directly
rather than having to modify the PLL interpreter. Hence, we call our approach SEJITS: selective,
embedded, just-in-time specialization [7].

SEJITS helps domain experts use the work of efficiency programmers. Efficiency programmers
can "drop" new modules specialized for particular computations into the SEJITS framework, which
will make runtime decisions when to use it. By separating the concerns of ELL and PLL
programmers, SEJITS frees both the PLL and ELL programmers to concentrate on their respective
specialties.

An example is Copperhead, which is a data-parallel Python dialect. Following the SEJITS
philosophy, every Copperhead program is valid Python, executable by the Python interpreter.
However, when it consists of data parallel operations taken from a Python library, the Copperhead
runtime specializes the resulting program into efficient parallel code. Examples of data-parallel
operations include map, reduce, scatter, gather, sort, scan, zip, collect, split, and join. Parallelism is
expressed through data, for example, by splitting a sequence into independent subsequences.
Synchronization is also inferred from data access patterns, such as when sequences are joined.
When a Copperhead procedure is executed, the Copperhead runtime specializes the program into a
series of data parallel kernels for a particular parallel platform, and then dispatches the resulting
specialized computation on parallel hardware. Preliminary experiments show encouraging
efficiency, while enabling parallel programming at a much higher level of abstraction [7]. Our goal
is to specialize an entire image processing computation, such as in Figure 1 below.

Platforms and Applications of 2020

We believe future applications will have footholds in both mobile clients and in cloud computing.
Many client applications are downloaded and run inside a browser, so we are investigating parallel
browsers [8].



We note that both client and cloud are concerned with responsiveness and power efficiency. The
application client challenge is responsiveness while preserving battery life given a variety of
platforms. The application cloud challenge is responsiveness and throughput while minimizing cost
in a pay-as-you-go environment [9]. In addition, cloud computing providers want to lower costs,
which are primarily power and cooling.

To illustrate the client/cloud split, suppose a domain expert wants to create an application that
suggests the name of a person walking toward you. Once identified, the client device then whispers
the information to you. Responsiveness is key, as seconds separate timely from irrelevant.
Depending on wireless connectivity and battery state, a “Name Whisperer” could send photos to the
cloud to do the search, or the client could search locally from a cache of people you've met.

Object Recognition Systems

Clearly, an object recognition system will be a major component of such an application. Figure 1
shows the computational flow of a local object recognizer [10], which gets good results on vision
benchmarks. Although high quality, it is computationally intensive: it takes 5.5 minutes to identify
five kinds of objects in a 0.15MB image, which is far too slow for our application.
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Figure 1: Computation flow of object recognition using regions.

The main goal of an application framework is to help application developers design their
applications efficiently. For computer vision, computations include image contour detection,
texture extraction, image segmentation, feature extraction, classification, clustering, dimensionality
reduction, and so on. There are many algorithms proposed for each computation, with different
trade-offs. Each method corresponds to an application pattern. The application framework is used
to integrate these patterns together. As a result, the application developers can compose their
applications by arranging the computations together, and let the framework figure out which
algorithm to use, how to set parameters for the algorithm, and how to communicate between
different computations.



Figure 1 shows the four main computations of the object recognizer. We can try out application
patterns for different contour detectors, image segmentors, feature extractors, and
trainer/classifier and find the composition that achieves the highest accuracy. An alternative is to
only specify the composition of the computation, and let the application framework choose the
proper application pattern to realize the computation.

We choose application patterns manually. Now we investigate the contour detector, which uses
75% of the time, as an example. Among all contour detectors, the gPb algorithm achieves the
highest accuracy. Figure 1 summarizes our version of the gPb algorithm. The major computational
bottlenecks are the localcue computation and the generalized eigensolver. For the localcue
computation, we replace the explicit histogram accumulation by integral image, and apply parallel
scan for realizing integral image. For the generalized eigensolver, we proposed a highly parallel
SpMV kernel and investigated appropriate reorthogonal approaches for the Lanczos algorithm. By
selecting good patterns to form a proper software architecture that reveals parallelism and then
exploring appropriate algorithmic approaches and parallel implementations within that software
archtiecture, we accelerated contour execution time by 140X from 4.2 minutes to 1.8 seconds on a
GPU by [11].

Performance Measurement and Autotuning

The prevailing hardware trend of dynamically improving performance with little software
visibility has become counterproductive; software must adapt if parallel programs are going to be
portable, fast, and energy-efficient. Hence, parallel programs must be able to understand and
measure any computer so that they can adapt effectively. This perspective suggests architectures
with transparent performance and energy consumption and Standard Hardware Operation Trackers
(SHOT) [12]. SHOT enables parallel programming environments to deliver on the goals of
portability, performance, and energy-efficiency. For example, we used SHOT to examine alternative
data structures for the image contour detector, by examining realized memory bandwidth versus
the data layout.

While SHOT helps evaluate alternatives, what mechanism adapts the software to the hardware?
Autotuners produce high-quality code by generating many variants and measuring each variant on
the target platform. The search process tirelessly tries many unusual variants of a particular
routine. Unlike libraries, autotuners also allow tuning to the particular problem size. Autotuners
also preserve clarity and help portability by reducing the temptation to mangle the source code to
improve performance for a particular computer. Automatic creation of autotuners is an important
research area [13].

The Copperhead specialization machinery has built-in heuristics that guide decisions about data
layout, parallelization strategy, execution configuration, and so on. Autotuning allows the
Copperhead specializer to gain efficiency portably, however, since the optimal execution strategy
differs by platform.

The Architecture and OS of 2020

We expect the client hardware of 2020 will contain hundreds of cores in replicated hardware
tiles. Each tile will contain one processor designed for instruction-level parallelism for sequential
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code and a descendant of vector and GPU architectures for data-level parallelism. Task-level
parallelism occurs across the tiles. The number of tiles per chip varies depending on cost-
performance goals. Thus, although the tiles will be identical for ease of design and fabrication, the
chip supports heterogeneous parallelism. The memory hierarchy will be a hybrid of traditional
caches and software-controlled scatchpads [14]. We believe that such mechanisms for mobile
clients will also aid servers in the cloud.

Since we rarely run just one program, the hardware will partition to provide performance
isolation and security between multiprogrammed applications. Partitioning suggests restructuring
systems services as a set of interacting distributed components. The resulting "deconstructed 0S"
Tessellation implements scheduling and resource management of partitions [15]. Applications and
OS services (like file systems) run within partitions. Partitions are lightweight and can be resized or
suspended with overhead comparable to a context swap. The OS kernel is a thin layer responsible
for only the coarse-grain scheduling and assignment of resources to partitions and secure restricted
communications among partitions. It avoids the performance issues with traditional microkernels
by providing OS services through secure messaging to spatially co-resident service partitions,
rather than context-switching to time-multiplexed service processes. User-level schedulers are used
within a single partition to schedule application tasks onto processors across potentially multiple
different libraries and frameworks, and the Lithe layer offers an interface to schedule independent
libraries efficiently [16].

Par Lab Today

We have identified the architectural and software patterns and are using them in the
development of applications in vision, music, health, speech, and browsers. These applications drive
the rest of the research. We have two SEJITS prototypes and autotuners for several motifs and
architectures. We have a 64-core implementation of our tiled architecture in FPGAs that we use for
architectural experiments, including the first implementation of SHOT. FPGAs afforded a 250X
increase in simulation time over software simulators, and the lengthier experiments often led to
opposite conclusions. The initial Tessellation OS boots on our prototype and can create a partition,
and Lithe has demonstrated efficient composition of code written using both TBB and OpenMP
libraries.

UPCRC-lllinois

The Universal Parallel Computing Research Center at Illinois (UPCRC-Illinois) was established in
2008 as a result of the same competition that led to the establishment of ParLab. It involves about
50 faculty and students and is co-directed by Wen-mei Hwu and Marc Snir. UPCRC-Illinois is one of
several major projects in parallel computing at Illinois (see http://parallel.illinois.edu) - continuing
on a long tradition of leadership that started with the Illiac projects. The sections below describe
work performed by many of the center’s researchers; it was carefully edited by Cheri Helregel. The
full list of -Illinois research leads and a detailed description of ongoing projects can be found at
http://www.upcrc.illinois.edu.




Our work on applications is focused on the creation of compelling 3D web applications and
human-centered interfaces. We have a strong focus on programming language, compiler and run-
time technologies, aimed at supporting parallel programming models that provide simple,
sequential-by-default semantics with parallel performance models, and that avoid concurrency
bugs. Our significant architecture work is focused on the efficient support for shared memory with
many hundreds of cores.

Applications

The 3D Internet will enable many new compelling applications. For example, the TEEVE 3D
teleimmersion framework and its descendants [17] have been used to support remote collaborative
dancing, remote Tai-Chi training, manipulation of virtual archeological artifacts, training of
wheelchair-bound basketball players and gaming. Applications are limited by a low frame-rate, and
inability to handle visually noisy environments. Broad real-time usage in areas such as multiplayer
gaming or telemedicine requires several order of magnitude performance improvements in tasks
such as the synthesis of 3D models from multiple 2D images; the recognition of faces and face
expressions, of objects and gestures; and the rendering of dynamically created synthetic
environments. Such tasks must execute on the mobile client, to reduce the impact of Internet
latencies on real-time interactions. Many of the same tasks will be at the core of future human-
centered ubiquitous computing environments that can understand human behavior and anticipate
needs - although significant technical progress is needed [18].

We are developing new parallel algorithms for these tasks that can achieve required
performance levels. We have implemented new parallel algorithms for Depth Image Based
Rendering - creating a virtual view of a 3D object from a new angle, based on information from a
depth camera and multiple optical cameras - and shown speedups of more than x74. We have
implemented parallel versions of algorithms for the analysis of video streams; speedups in excess of
%400 have been demonstrated on a hand tracking task and for B-spline image interpolation. The
algorithms have been used for the NIST TREC Video Retrieval Challenge which requires the
identification of specific events in surveillance videos. Speedups in excess of x13 have been
achieved for the complete application. The algorithms are being collected into the publicly available
Vivid library (http://libvivd.sourceforge.net) in the form of parallel functions callable from Python
code 19 [1].

Spatial data structures form the backbone of many computationally-intensive 3D applications
and data mining and machine learning algorithms. To support such applications, we are developing
ParKD, a comprehensive framework for parallelized spatial queries and updates through scalable,
parallel k-D tree implementations. ParkKD algorithms speed up the generation of k-D trees and
generate k-D trees that enable efficient parallel rendering. We plan to integrate all these
components into an end-to-end teleimmersive application.

Performance constraints of mobile platforms restrict the functionality of mobile application and
lengthen their development time. For example, in order to achieve high quality, real-time graphics
in interactive games, one needs to precompute data structures used for rendering. This restricts the
number of supported scenarios and increases development time and cost. Less constrained



multiplayer games use lower quality graphics. An added advantage of our work will be to enable
applications that provide better user experience and that can be developed faster.

Parallelism can also be used to achieve other goals, such as better Quality of Service, or
improved security. Our work on Teeve shows how the use of multiple cores can simplify QoS
provision for multiple concurrent real-time tasks.. Our work on the OP web browser [20] shows
that parallelism can not only improve browser performance, but also reduce vulnerabilities by
using compartmentalization.

Programming Environment

We distinguish between concurrent programming that focuses on problems where concurrency
is part of the specification and parallel programming that focuses on problems where concurrent
execution is used only for improving the performance of a computation. Concurrent programming
is used in reactive systems, such as an operating system, graphical user interfaces, or on-line
transaction processing system, where computations (or transactions) are triggered by
nondeterministic, possibly concurrent, requests or events. Parallel programming is used in
transformational systems, such as in scientific computing or signal processing, where an initial
input (or an input stream) is mapped through a chain of (usually) deterministic transformations
into an output (or an output stream). The prevalence of multicore platforms does not increase the
need for concurrent programming and does not make it harder; it increases the need for parallel
programming. It is our contention that parallel programming is much easier than concurrent
programming; in particular, it is seldom necessary to use nondeterministic code.

Error! Reference source not found. presents a very schematic view of the parallel software
creation process. One will often start with a sequential code, although starting from a high-level
specification is preferred. It is often possible to identify “outer loop” parallelism where all or most
of the sequential code logic can be encapsulated into a parallel execution framework (pipeline,
master-slave, etc.), with little or no change in the sequential code. If this is not sufficient to achieve
the desired performance then one identifies compute intensive kernels, encapsulates them into
libraries, and tunes these libraries to leverage parallelism at a finer grain, including SIMD
parallelism. While the production of carefully tuned parallel libraries will involve performance
coding experts, simple, coarse-level parallelism should be accessible to all.
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We propose to help “simple parallelism” by developing refactoring tools that help convert
sequential code into parallel code written using existing parallel frameworks in C# or Java [21], and
debugging tools that help identify concurrency bugs [22]. More fundamentally, we propose to
support simple parallelism with languages that are deterministic by default and concurrency safe
[23].

Languages such as Java and C# provide safety guarantees (e.g., type safety or memory safety)
that significantly reduce the opportunities for hard to track bugs and improve programmer
productivity. We plan to bring the same benefits to parallel and concurrent programming: a
concurrency safe language prevents, by design, the occurrence of data races. As a result, the
semantics of concurrent execution is well-defined, and hard-to-track bugs are avoided. A
deterministic by default language will also ensure that, unless explicit nondeterministic constructs
are used, any execution of a parallel code will have the same outcome as a sequential execution.
This significantly reduces the effort of testing parallel code and facilitates the porting of sequential
code. Our work on Deterministic Parallel Java (DP]) [24] shows that both properties can be
satisfied, even for modern object-oriented programming, without undue loss of expressiveness, and
good performance. Moreover, the deterministic guarantee can be enforced with simple, compile-
time type checking, which has major benefits. Although such a safe language requires some initial
programming effort, these efforts are small compared with that of designing and developing a
parallel program and can be significantly reduced via interactive porting tools [25]. Our tool,
DPJizer, can infer much of the added information required by DP]. The effort has a large long-term
payoff in terms of greatly improved documentation, maintainability, and robustness under future
software changes.

The development of high-performance parallel libraries requires a different environment that
enables programmers to work more closely to the bare metal, and facilitate porting and tuning for
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new platforms. We believe that such work should happen in an environment where compiler
analysis and code development interact tightly, so that the performance programmer works with
the compiler, not against it, as is often the case today. We are working on refactoring environments
where code changes are mostly annotations that add information not otherwise available in the
source code. The annotation information is extended by advanced compiler analysis to enable
robust deployment of transformations such as data layout adjustment and loop tiling
transformations. One particular goal of our Gluon work is to enable portable parallel code base for
both fine-grained engines such as GPUs and coarser grained multi-core CPUs, as well as their
associated memory hierarchies. Auto-tuning by manipulating the algorithm or the code is another
technique we apply to this problem.

Parallel libraries are most easily integrated into sequential code when they follow the SIMD
(Single Instruction stream, Multiple Data stream) model. Our work on Hierarchical Tiled Arrays
(HTA) ) [26] confirms earlier results showing that the effectiveness of this model is not confined to
the traditional array computations and can be used to support a wide range of complex applications
with good performance. The use of tiles as a first class object gives programmers good control of
locality, granularity, and load balancing.

The integration of parallel libraries and frameworks into a concurrency safe programming
environment requires a careful design of interfaces to ensure that the safety guarantees are not
violated. We can use simple language features as specialized “contracts” at framework interfaces to
ensure that client code using a parallel framework (with internal parallelism) does not violate
assumptions made within the framework implementation [27]. Such an approach gives the
(presumably) expert framework implementer freedom to use low-level and/or highly tuned
techniques within the framework while enforcing a safety net for (presumably) less expert
application programmers using the framework. The expert framework implementation can be
subject to extensive testing and analysis techniques, including proofs of concurrency safety using
manual annotations.

Architecture

The continued scaling of feature sizes will enable systems with hundreds of conventional cores,
and possibly thousands of light-weight cores, within a decade. Current cache coherence protocols
do not scale to such numbers. A major reason is that, with current protocols, each shared memory
access by a core is considered to be a potential communication/synchronization with any other
core. In fact, parallel programs communicate and synchronize in stylized ways. A key to shared
memory scaling is the adjustment of coherence protocols to leverage the prevalent structure of
shared memory codes for performance. We are exploring three approaches to do so. The Bulk
Architecture is executing coherence operations in bulk, committing large groups of loads and stores
at a time [28]. In this architecture, memory accesses appear to interleave in a total order, even in
the presence of data races—which helps software debugging and productivity—while the
performance is high through aggressive reordering of loads and stores within each group. The
DeNovo architecture coherence and communication involves co-designing hardware with
concurrency-safe programming models [29], and the Rigel architecture plans to shift more
coherence activities to software [30]. In addition, a higher-level view of communication and
synchronization across threads enables the architecture to help program development, e.g., by
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supporting deterministic replay of parallel programs [31], or by tracking races in codes that do not
prevent them by design [32].

The Stanford University Pervasive Parallelism Laboratory

In May 2008 Stanford University officially launched the Pervasive Parallelism Laboratory (PPL).
The goal of the PPL is to make parallelism accessible to average software developers so that it can
be freely used in all computationally demanding applications. The PPL pools the efforts of many
leading Stanford computer scientists and electrical engineers with support from Sun Microsystems,
NVIDIA, IBM, Advanced Micro Devices, Intel, NEC, and Hewlett Packard under a completely open
industrial affiliates program. The open nature of the lab allows other companies to join the effort
and does not provide any member company with exclusive intellectual property rights to the
research results.

The PPL Approach to Parallelism

A fundamental premise of the PPL is that parallel computing hardware will be heterogeneous.
This is already true today: currently shipping personal computer systems are composed of a chip
multiprocessor and a highly data parallel co-processor, the GPU. Large clusters of such nodes have
already been deployed and most future high performance computing environments will contain
GPUs. To fully leverage the computational capabilities of these systems, an application developer
has to contend with multiple, sometimes incompatible, programming models. Shared memory
multiprocessors are generally programmed using threads and locks (e.g. pthreads, OpenMP) while
GPUs are programmed using data-parallel languages (e.g. CUDA, OpenCL) and communication
between the nodes in a cluster is programmed with message passing (e.g. MPI). The existence of
heterogeneous hardware systems is driven by the desire to improve hardware productivity,
measured by performance per watt and performance per dollar. This desire will continue to drive
even greater hardware heterogeneity that will include special purpose processing units. As the
degree of hardware heterogeneity increases, developing software for these systems will become
even more complex. Our hypothesis is that the only way to radically simplify the process of
developing parallel applications and improve programmer productivity, measured by programmer
effort required for a given level of performance, is to use very-high level domain-specific
programming languages and programming environments. These environments will capture
parallelism implicitly and will optimize and map this parallelism to heterogeneous hardware using
domain-specific knowledge. Thus, our vision for the future of parallel application programming is
to replace a disparate collection of programming models, which require specialized architecture
knowledge, with domain-specific languages that match the knowledge and understanding of
application developers.
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Figure 3: A layered approach to the problem of parallel computing.

The PPL Research Agenda

To drive PPL research we are developing new applications in areas that have the potential to
exploit significant amounts of parallelism but also present significant software development
challenges. These application areas demand enormous amounts of computing power to process
large amounts of information, often in real-time. They include traditional scientific and engineering
applications from geosciences, mechanical engineering and bio engineering; a massive virtual
world including a client-side game engine and a scalable world server, personal robotics including
autonomous driving vehicles and robots that can navigate home and office environments; and
sophisticated data analysis applications capable of extracting information from huge amounts of
data. These applications will be developed by domain experts in collaboration with PPL
researchers.

The core of our research agenda is to allow a domain expert to develop parallel software without
becoming an expert in parallel programming. Our approach is to use a layered system (Figure 3)
based on implicitly parallel domain-specific languages (DSLs) [33], a domain embedding language, a
common parallel runtime system, and a heterogeneous architecture that provides efficient
mechanisms for communication, synchronization, and performance monitoring.

We expect that most programming of future parallel systems will be done in DSLs at the
abstraction level of Matlab or SQL. DSLs enable the average programmer to be highly productive in
writing parallel programs by isolating the programmer from the details of parallelism,
synchronization, and locality. The use of DSLs also recognizes that most applications are not
written from scratch, but rather built by combining existing systems and libraries [34]. The DSL
environment uses its high-level view of the computation and its domain knowledge to direct
placement and scheduling to optimize parallel execution. Our goal is to build the underlying
technology that makes it easy to create implicitly parallel DSLs, and design and implement at least
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three specific languages using this technology to demonstrate that it is capable of supporting
multiple DSLs. To support science and engineering applications, we are developing a mesh based
PDE DSL called Liszt and a physics DSL that is based on the physics simulation library PhysBAM
which has been extensively used in biomechanics, virtual surgery and visual special effects. To
support the many algorithms in robotics and data informatics that are based on machine learning,
we are developing a machine learning DSL called OptiML. Finally, we are using the Scala
programming language [35] to serve as the language used for embedding the DSLs. Scala integrates
key features of object-oriented and functional languages and Scala’s extensibility makes it possible
to define new DSLs in a natural way.

Our common parallel runtime system (CPR), called Delite, supports both implicit task-level
parallelism for generality and explicit data-level parallelism for efficiency. The CPR maps the
parallelism extracted from a DSL based application to heterogeneous architectures and manages
the allocation and scheduling of processing and memory resources. The mapping process begins
with a task graph, which exposes task-level and data-level parallelism and retains the high-level
domain knowledge expressed by the DSL. This domain knowledge is used to optimize the graph by
reducing the total amount of work and by exposing more parallelism. The CPR scheduler uses this
task graph to reason about large portions of the program and make allocation and scheduling
decisions that reduce communication and improve locality of data access. Each node of the task
graph can have multiple implementations that target different architectures, this provides support
for heterogeneous parallelism.

To support the CPR, we are developing a set of architecture mechanisms that provide
communication and synchronization with very low overheads. Such mechanisms will support both
efficient fine-grained exploitation of parallelism to get many processors working together on a
fixed-size dataset and coarse-grained parallelism to gain efficiency through bulk operations. A key
challenge is the design of a memory hierarchy that simultaneously supports both implicit reactive
mechanisms (caching with coherence and transactions) and explicit proactive mechanisms (explicit
staging of data to local memory). Our goal is to develop a simple set of mechanisms that is general
enough to support execution models ranging from speculative threads (to support legacy codes) to
streaming (to support explicitly-scheduled data parallel DSLs) [36]. To evaluate these architecture
mechanisms with full-size applications at hardware speeds we are using a prototyping system
called the Flexible Architecture Research Machine (FARM). FARM tightly couples commodity
processors chips for performance with FPGA chips for flexibility, using a cache coherent shared
address space [37].

Liszt

Working with the developers of a hypersonic fluid flow simulation we have designed a DSL
called Liszt. Liszt is a domain-specific programming environment developed in Scala for
implementing PDE solvers on unstructured meshes. Here is a typical fragment of Liszt code:
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val position = vertexProperty[double3] (“pos”)
val A = new SparseMatrix[Vertex,Vertex]

for (c <- mesh.cells) {

val center = average position of c.vertices
for (f <- c.faces) {
val face_dx = average position of f.vertices - center
for (e <- f.edges With c CCW) {

val v0 = e.tail
val vl = e.head
val v0_dx = position(v0) - center
val vl_dx = position(vl) - center
val face_normal = v0_dx cross vl_dx

// calculate flux for face

Liszt abstracts the representation of the common objects and operations used In flow
simulation. First, since 3D vectors are common in physical simulation, they have been implemented
as objects with common methods for dot and cross products. Second, the mesh data structure has
been completely abstracted. All mesh access is performed through standard interfaces; in the code
fragment, mesh.cells returns the set of cells in the mesh and “f.edges With ¢ CCW” returns
a list of edges around a face oriented counter clockwise. Field variables are associated with
topological elements such as cells, faces, edges and vertices, but they are accessed through methods
so that their representation is not exposed. Finally, sparse matrices (2 in the example) are indexed
by topological elements, not integers. This code appeals to the computational scientists because it is
written in a form they understand; it also appeals to the computer scientists because it hides the
details of the machine.

One of the keys to good parallel performance is good memory locality, and the choice of data
structure representation and data decomposition can have an enormous impact on locality. The
use of DSLs and domain-knowledge make it possible to pick the data structure that best fits the
characteristics of the architecture. The DSL compiler for Liszt, for example, knows what a mesh, a
cell, and a face are. As a result, the compiler has the information needed to select the data structure
representations, data decomposition and the layout of field variables that are optimized for a
specific architecture. Using this domain-specific approach, it is possible to generate a special
version of the code for a given mesh running on a given architecture. No general-purpose compiler
could possibly do this type of super-optimization.
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Delite
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Figure 4: Delite example application execution overview.

Delite is both a framework that helps DSL developers write implicitly parallel DSLs as well as a
run-time that handles most aspects of parallel heterogeneous execution. Delite enables a layered
approach to parallel heterogeneous programming that hides the complexity of the underlying
machine behind a collection of DSLs. The use of DSLs creates two types of programmers. The first
type is the application developer who uses DSLs and is shielded from parallel or heterogeneous
programming constructs (Figure 4a). The second type of programmer is the DSL developer. The
DSL developer uses the Delite framework to implement a DSL. The DSL developer defines the
mapping between DSL methods into domain specific units of execution called OPs. OPs are classes
that hold the implementation of a particular domain specific operation (i.e. Matrix multiply) and
other information needed by the run-time for efficient parallel execution (i.e. cost of this operation,
is it side-effect free, etc...). OPs also encode any dependencies on data objects or previously created
OPs. When an application calls a DSL method(the * method in Matrix), an OP (OP_mult) is submitted
to the Delite run-time through a defer method and a proxy is immediately returned as the result of
this DSL method invocation (Figure 4b). The application is oblivious to the fact that computation
has been deferred and “runs-ahead” allowing more OPs to be submitted. These OPs form a dynamic
task graph that can then be scheduled to run in parallel, if independent (Figure 4c). Multiple
variants of each OP in the domain specific language can be generated to target different available
parallel architectures (Figure 4d). As new architectures emerge, Delite can be enhanced to generate
code for these new architectures. The application doesn’t need to be rewritten to benefit from these
new architectures, which provides forward scalability, and unless the DSL interface changes, the
application need not even be recompiled.

Delite employs domain specific knowledge to optimize the task graph before it is scheduled for
execution. These optimizations are enabled by domain knowledge supplied to Delite by the DSL
developer. Furthermore, DSL OPs tend to be high-level operations (i.e. matrix multiplication,
partitioning, mapping, filtering), and many of these OPs contain substantial data-parallelism. Data-
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parallel OPs can be partitioned and scheduled independently. This allows Delite to take advantage
of both the task-level parallelism by running independent OPs in parallel as well as data-parallelism
by splitting data-parallel OPs into independent chunks. The Delite framework will provide a variety
of OPs that allow the DSL developer to implement standard data-parallel operations without
worrying about granularity and memory locality issues; the run-time will optimize granularity and
locality dynamically based on the global information collected from all the OPs submitted to Delite.
A DSL developer can also provide domain knowledge that describes how to decompose a data
parallel operation for efficient execution.

We have demonstrated that Delite can be used to extract and optimize both task and data level
parallelism for a number of machine learning (ML) kernels written in OptiML [38]. Our results
show significant potential for this approach to uncover large amounts of parallelism from
applications written using a Delite DSL. Future work will demonstrate how the Delite infrastructure
can be used to target a heterogeneous parallel architecture composed of multicores and GPUs and
interface with more specialized parallel runtimes that we are developing such as Sequoia (divide
and conquer), Phoenix [39] (map/reduce) and GRAMPS [40] (producer/consumer).

Summary

The work at the three centers bears many similarities. All three centers are focused on
applications and derive their work on programming models and architectures from the needs of
applications (this is all the more noticeable given that the lead authors from each center are known
for their computer architecture work). All three centers assume that future microprocessors will
have hundreds of cores, and will combine different types of cores in one chip. All three centers
work to support well a division of labor between efficiency experts and application domain experts.
Berkeley expects the domain expert to use application frameworks or to program in a language
such as Python, while the efficiency expert programs libraries in a language such as C++;
performance is gained by selectively applying just-in-time specializations to the Python programs
based on parallel motifs and existing libraries; Illinois expects domain experts to use safe versions
of parallel C++ or C#; libraries developed by efficiency experts are incorporated without breaking
safety by using suitable contractual interfaces. Stanford develops an infrastructure based on the
extensible language Scala that enables efficiency experts to develop domain-specific languages to be
used by domain experts; performance is gained by using domain-knowledge to drive compile-time
and run-time optimization. Illlinois and Stanford are concerned with better architectural support for
communication and synchronization while Berkeley is focused on isolation and measurement;
finally, Berkeley and Stanford are concerned with novel OS and run-time structures to support
parallelism.

The stagnation in uniprocessor performance and the shift to multi-core architectures is a
technological discontinuity that will force major changes in the IT industry. The three centers are
proud of the opportunity given to them to have a major role in driving this change and humbled by
the magnitude of the task.
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